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Solutions of self-similar problems of outflow of a mixture into vacuum, steady-state mixture flow near the
exterior obtuse angle, and an accelerating piston in a dispersive medium have been obtained for the model
of a one-velocity heterogeneous medium in which the internal forces of interfractional interaction are al-
lowed for.

Two models of a one-velocity heterogeneous medium have been described in the literature. In the first model,
the action of internal forces of interfractional interaction was disregarded [1], whereas in the second model, these
forces were allowed for [2]. Their fundamental difference is that in the first model, both the entropy of the entire mix-
ture and the entropies of the fractions composing the medium for an individual particle of the medium along its path
remain constant, whereas in the second model, it is only the entropy of the entire mixture that is invariant. For the
medium’s model in which the interfractional-interaction forces were disregarded, we were able to obtain the analytical
expression of the isentropy of the mixture and to write, on its basis, the Bernoulli integral (for stationary flows). These
relations were subsequently used in constructing the solution of the problems on outflow of a dispersive medium into
vacuum [3] and on steady-state flow of a multicomponent mixture near the exterior obtuse angle [4]. Clearly, the ap-
proaches developed in [3, 4] are inapplicable in the case where the model from [2] is used in solving the above-men-
tioned problems, since there is no analytical solution for the isentropy. Nonetheless, we are able to find the solutions
of the problems indicated for this model, too, as will be shown below.

It is noteworthy that for the medium’s model from [2], unlike [1], the Cauchy problem is correct for an ar-
bitrary flow velocity and any number of fractions in the mixture (the corresponding dispersion equations have only
real roots); therefore, the medium’s model in which interfractional-interaction forces are allowed for is more preferable.

In describing the behavior of the components of the mixture, we use, for the sake of definiteness, the equation
of state of the form

εi = 
p − c∗i

2
 (ρi

0
 − ρ∗i)

ρi
0
 (γi − 1)

 = 
bi + pBi

ρi
0   − ai ,

(1)

where Bi = 1 ⁄ (γi − 1), ai = c∗i
2 Bi, and bi = aiρ∗i. When (1) is used, the equation of state of an n-component mixture

with the first m compressible fractions takes the form [2]

ε = 
1
ρ

 






bm + pBm + ∑ 

i=1

m−1

αi (bim − aimρi
0
 + pBim) + ∑ 

j=m+1

n

αjρj
0εj







 − am . (2)

Here Bim = Bi − Bm, aim = ai − am, and bim = bi − bm.
Plane Steady-State Flow of the Medium near the Exterior Obtuse Angle. The system of governing equa-

tions which describes plane stationary flow of an n-component mixture with the first m compressible fractions is as
follows [2]:
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∂ρ
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1
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∂x
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∂x
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1
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∂p
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∂ρ
∂x
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∂ρ
∂y
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u 
∂p

∂x
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∂p

∂y




 + ∑ 

i=1

m−1

Ai+2 



u 
∂ρi

0

∂x
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∂ρi
0

∂y
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∂αi

∂x
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n
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u 
∂αj

∂x
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∂αj

∂y




 = 0 ,

− 
1

ρ
 






u 
∂ρ

∂x
 + v 

∂ρ

∂y







 + 

1

ρi
0 






u 
∂ρi

0

∂x
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∂ρi
0

∂y







 + 

1

αi

 






u 
∂αi

∂x
 + v 

∂αi

∂y







 = 0 ,

Bi

p
 






u 
∂p

∂x
 + v 

∂p

∂y







 − 

bi + p (1 + Bi)

pρi
0  







u 
∂ρi

0

∂x
 + v 

∂ρi
0

∂y







 − 

1

αi

 






u 
∂αi

∂x
 + v 

∂αi

∂y







 = 0 ,     i = 1, ..., m − 1 ,

u 
∂αj

∂x
 + v 

∂αj

∂y
 + 

αj

ρ
 



u 
∂ρ
∂x

 + v 
∂ρ
∂y




 = 0 ,     j = m + 1, ..., n . 

(3)

Here we have

A1 = − 
1
ρ

 






bm + p (1 + Bm) + ∑ 

i=1

m−1

αi (bim − ρi
0
aim + pBim) + ∑ 

j=m+1

n

αjAj+m







 ; (4)

A2 = Bm + ∑ 

i=1

m−1

αiBim ;   Ai+2 = − αiaim ;   Ai+m+1 = bim − ρi
0
aim + pBim ;   Aj+m = ρj

0εj = const .

The solution of system (3) will be sought in the form ρ = ρ(ξ), u = u(ξ), v = v(ξ), p = p(ξ), ρi
0 = ρi

0(ξ), and αi =
αi(ξ), where ξ = y ⁄ x. In the physical plane (x, y), the coordinate ξ corresponds to the straight line emergent from the
origin of coordinates at an angle arctan (y ⁄ x) to the abscissa axis (Fig. 1), along which the values of the parameters
of the mixture are constant. System (3) with account for the relations

∂
∂x

 = 
d

dξ
 
∂ξ
∂x

 = − 
ξ
x

 
d

dξ
 ,   

∂
∂y

 = 
d

dξ
 
∂ξ
∂y

 = 
1
x

 
d
dξ

 

Fig. 1. Mixture flow near the exterior obtuse angle.
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is reduced to the system of ordinary differential equations

ρ 


dv
dξ

 − ξ 
du
dξ




 + (v − ξu) dρ

dξ
 = 0 , (5)

(v − ξu) du
dξ

 − 
ξ
ρ

 
dp
dξ

 = 0 , (6)

(v − ξu) dv
dξ

 + 
1
ρ

 
dp
dξ

 = 0 , (7)

A1 
dρ
dξ

 + A2 
dp

dξ
 + ∑ 

i=1

m−1

 



Ai+2 

dρi
0

dξ
 + Ai+m+1 

dαi

dξ



 + ∑ 

j=m+1

n

Aj+m 
dαj

dξ
 = 0 , (8)

− 
1

ρ
 
dρ

dξ
 + 

1

ρi
0
 
dρi

0

dξ
 + 

1

αi

 
dαi

dξ
 = 0 , (9)

Bi

p
 
dp

dξ
 − 

bi + p (1 + Bi)

pρi
0  

dρi
0

dξ
 − 

1

αi

 
dαi

dξ
 = 0 ,     i = 1, ..., m − 1 , (10)

1

αj
 
dαj

dξ
 − 

1

ρ
 
dρ
dξ

 = 0 ,     j = m + 1, ..., n . (11)

We seek the nontrivial solution of system (5)–(11). First we transform the original system. Multiplying Eq.
(6) by −ξ and adding to (7), we obtain the relation

ρ (v − ξu) 


dv
dξ

 − ξ 
du
dξ




 + (1 + ξ2) dp

dξ
 = 0 ,

whose comparison to Eq. (5) yields

dp

dρ
 = 

(v − ξu)2

1 + ξ2  . (12)

Integrating Eqs. (9) and (11) from the initial state to the running one, we find

αi = αi0 
ρ

ρ0

 
ρi0

0

ρi
0  ,     i = 1, ..., m − 1 , (13)

αj = 
αj0ρ
ρ0

 ,     j = m + 1, ..., n . (14)

Taking relations (9)–(11) into account, we rewrite Eq. (8) in the form
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dp
dρ

 = 

A1 + 
1

ρ
 ∑ 

i=1

m−1αi [bi + p (1 + Bi)] Ai+m+1 − pρi
0
Ai+2

bi + pBi
 + 

1

ρ
   ∑ 

j=m+1

n

 αjAj+m

∑ 

i=1

m−1
Bi (αiAi+m+1 − ρi

0
Ai+2)

bi + pBi
 − A2

 . (15)

A comparison of (15) to expression (12) yields another integral of system (5)–(11):

(v − ξu)2

1 + ξ2
 = f (p, ρ, ρ1

0
, ..., ρm−1

0 ) , (16)

where

f (p, ρ, ρ1
0
, ..., ρm−1

0 ) = 

1

ρ
 










p 






∑ 

i=1

m−1αi (bim + pBim)
bi + pBi

 − (1 + Bm)






 − bm











∑ 

i=1

m−1
αi (bimBi − biBim)

bi + pBi
 − Bm

 .
(17)

We must allow for expressions (13) in formula (17). Differentiating (16) with respect to ξ, we obtain the equation

dv
dξ

 − ξ 
du
dξ

 = 
u (v − ξu) + ξf

v − ξu
 + D1 

dp
dξ

 + D2 
dρ
dξ

 , (18)

where

D1 = 
1 + ξ2

2 (v − ξu)
 







∂f

∂p
 + ∑ 

i=1

m−1
ρi

0
Bi

bi + pBi
 
∂f

∂ρi
0







 ;     D2 = 

1 + ξ2

2 (v − ξu)
 







∂f

∂ρ
 − 

p

ρ
 ∑ 

i=1

m−1
ρi

0

bi + pBi

 
∂f

∂ρi
0







 .

Expressions for the derivatives ∂f ⁄ ∂p, ∂f ⁄ ∂ρ, and ∂f ⁄ ∂ρi
0 are not given because of their cumbersomeness. Equation

(18) is considered in combination with (5)–(7) and with

dρi
0

dξ
 = 

ρi
0

bi + pBi
 



Bi 

dp

dξ
 − 

p

ρ
 
dρ
dξ




 ,     i = 1, ..., m − 1 . (19)

We reduce the new system of equations to a form convenient for integration:

dp

dξ
 = − 

ρ (v − ξu) [u (v − ξu) + ξf]

ρ (v − ξu)2D1 + (1 + ξ2) (v − ξu + ρD2)
 ,

du

dξ
 = − 

ξ [u (v − ξu) + ξf]

ρ (v − ξu)2D1 + (1 + ξ2) (v − ξu + ρD2)
 ,

dv

dξ
 = 

u (v − ξu) + ξf

ρ (v − ξu)2D1 + (1 + ξ2) (v − ξu + ρD2)
 ,
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dρ

dξ
 = − 

ρ (1 + ξ2) [u (v − ξu) + ξf]

(v − ξu) [ρ (v − ξu)2D1 + (1 + ξ2) (v − ξu + ρD2)]
 ,

dρi
0

dξ
 = 

ρi
0
 [u (v − ξu) + ξf] [p (1 + ξ2) − ρBi (v − ξu)2]

(bi + pBi) (v − ξu) [ρ (v − ξu)2D1 + (1 + ξ2) (v − ξu + ρD2)]
 ,     i = 1, ..., m − 1 .

(20)

System (20) is integrated on the segment [ξ0, ξ1], where ξ0 = 1 ⁄ √M0
2 − 1  and ξ1 = −tan δ; M0 =

u0
 ⁄ √f(p0, ρ0, ρ10

0 , ..., ρ(m−1)0
0 . The expression for ξ0 follows from equality (17) if we set p = p0, u = u0, v = 0, ρ =

ρ0, and ρ1
0 = ρ10

0 . The values of the volume concentrations of the fractions in the mixture are determined from rela-

tions (13) and (14) after the integration of system (20).
If some of the compressible fractions in the mixture are ideal gases for which bk = 0, after the integration,

Eqs. (19) for them will take the form

ρk
0
 = ρk0

0
 

p

p0
 




ρ0

ρ




1 ⁄ Bk

 , (21)

which diminishes the number of differential equations in system (20).
We note that if the angle δ is fairly large, there can occur a regime of flow to form a vacuum zone. The value

of the coordinate ξ∗ separating the region of flow of the dispersive medium from the vacuum zone, where p = 0, is
determined from the condition p(ξ∗) = 0.

As an example of calculation from the relations given above, we calculate flow of a binary mixture of an
ideal gas (γ1 = 1.4 and ρ10

0  = 1.19 kg ⁄ m3) with an incompressible second component (ρ2
0 = 1000 kg ⁄ m3) near the

angle δ = 220o. Figure 2 gives typical dependences of the distributions u(ξ) ⁄ u0, v(ξ) ⁄ u0, p(ξ) ⁄ p0, and α(ξ), obtained
in calculations of mixture flow with parameters M0 = 2.5, α0 = 0.9, and p0 = 105 Pa.

Outflow of the Multicomponent Medium into Vacuum. Governing equations for one-dimensional flow of
an n-component mixture with the first m compressible fractions [2] have the form

∂ρ
∂t

 + u 
∂ρ
∂x

 + ρ 
∂u

∂x
 = 0 ,   

∂u
∂t

 + u 
∂u

∂x
 + 

1
ρ

 
∂p

∂x
 = 0 ,

A1 




∂ρ
∂t

 + u 
∂ρ
∂x




 + A2 





∂p

∂t
 + u 

∂p

∂x




 + ∑ 

i=1

m−1

 



Ai+2 





∂ρi
0

∂t
 + u 

∂ρi
0

∂x




 + Ai+m+1 





∂αi

∂t
 + u 

∂αi

∂x









Fig. 2. Dependences of the parameters of flow of a binary mixture u ⁄ u0 (1),
v ⁄ v0 (2), p ⁄ p0 (3), and α (4) on ξ for M = 2.5.
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+ ∑ 

j=m+1

n

Aj+m 




∂αj

∂t
 + u 

∂αj

∂x




 = 0 ,

− 
1

ρ
 




∂ρ

∂t
 + u 

∂ρ

∂x




 + 

1

ρi
0
 




∂ρi
0

∂t
 + u 

∂ρi
0

∂x




 + 

1

αi

 




∂αi

∂t
 + u 

∂αi

∂x




 = 0 ,

Bi

p
 




∂p

∂t
 + u 

∂p

∂x




 − 

bi + p (1 + Bi)

pρi
0

 




∂ρi
0

∂t
 + u 

∂ρi
0

∂x




 − 

1

αi

 




∂αi

∂t
 + u 

∂αi

∂x




 = 0 ,     i = 1, ..., m − 1 ,

∂αj

∂t
 + u 

∂αj

∂x
 + αj 

∂u

∂x
 = 0 ,     j = m + 1, ..., n .

(22)

The coefficients A1, A2, Ai+2, Ai+m+1, and Aj+m in (22) are calculated from formulas (4).
The solution of system (22) will be sought in the form ρ = ρ(ξ), u = u(ξ), p = p(ξ), ρi

0 = ρi
0(ξ), and αi =

αi(ξ), where ξ = x ⁄ t. By allowing for the relations

∂
∂t

 = 
d

dξ
 
∂ξ
∂t

 = − 
ξ
t
 

d
dξ

 ,     
∂
∂x

 = 
d

dξ
 
∂ξ
∂õ

 = − 
1
t
 

d
dξ

it is reduced to a system of ordinary differential equations:

(u − ξ) 
dρ
dξ

 + ρ 
du
dξ

 = 0 , (23)

(u − ξ) du
dξ

 + 
1
ρ

 
dp
dξ

 = 0 , (24)

A1 
dρ
dξ

 + A2 
dp

dξ
 + ∑ 

i=1

m−1



Ai+2 

dρi
0

dξ
 + Ai+m+1 

dαi

dξ



 + ∑ 

j=m+1

n

 



Aj+m 

dαj

dξ



 = 0 ,

(25)

− 
1

ρ
 
dρ

dξ
 + 

1

ρi
0 

dρi
0

dξ
 + 

1

αi

 
dαi

dξ
 = 0 , (26)

Bi

p
 
dp

dξ
 − 

bi + p (1 + Bi)

pρi
0  

dρi
0

dξ
 − 

1

αi

 
dαi

dξ
 = 0 , (27)

− 
1

ρ
 
dρ
dξ

 + 
1

αj
 
dαj

dξ
 = 0 . (28)

We find the first integrals of system (23)–(28). After the integration of Eqs. (26) and (28) and transformations, we have

αi = αi0 
ρi0

0

ρi
0  

ρ

ρ0

 , (29)
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αj = 
αj0ρ
ρ0

 . (30)

Eliminating du ⁄ dξ from relations (23) and (24), we obtain

dp
dρ

 = (u − ξ)2 .
(31)

Equation (25) with account for expressions (27) and (28) will take the form (15). From (31) and (15), we have an-
other integral of system (23)–(28):

(u − ξ)2 = f (p, ρ, ρ1
0
, ..., ρm−1

0 ) , (32)

where the function f(p, ρ, ρ1
0, ..., ρm−1

0 ) is determined by formula (17), just as in the previous problem. Differentiating
(32) with respect to ξ, we obtain the equation

du
dξ

 = 1 + 
1

2 (u − ξ)
 



D1 

dp
dξ

 + D2 
dρ
dξ




 ,

 
(33)

where

D1 = 
∂f

∂p
 + ∑ 

i=1

m−1
ρi

0
Bi

bi + pBi

 
∂f

∂ρi
0
 ;     D2 = 

∂f

∂ρ
 − 

p

ρ
 ∑ 

i=1

m−1 ρi
0

bi + pBi

 
∂f

∂ρi
0
 .

Equation (33) is considered in combination with Eqs. (23), (24), and (27). We reduce the new system of equations to
a form convenient for integration:

dp

dξ
 = − 

2ρ (u − ξ)3

(u − ξ)2 (2 + ρD1) + ρD2

 ,

du

dξ
 = 

2 (u − ξ)2

(u − ξ)2 (2 + ρD1) + ρD2

 ,

dρ

dξ
 = − 

2ρ (u − ξ)

(u − ξ)2 (2 + ρD1) + ρD2

 ,

dρi
0

dξ
 = − 

2ρi
0
 (u − ξ) [ρBi (u − ξ)2 − p]

(bi + pBi) [(u − ξ)2 (2 + ρD1) + ρD2]
 ,      i = 1, ..., m − 1 .

(34)

The system of ordinary differential equations (34) is integrated from the initial state with parameters p = p0, ρ = ρ0,
ρi

0 = ρi0
0 , and u = u0 = 0 for ξ = ξ0 to a certain ξ∗ value that corresponds to the pressure p = 0. The value of ξ0, in

accordance with formula (32), is found from the relation

ξ0 = − √1

ρ0
 










bm + p0 







1 + Bm − ∑ 

i=1

m−1
αi0 (bim + p0Bim)

bi + p0Bi







 










  ⁄ 







Bm + ∑ 

i=1

m−1
αi0 (biBim − bimBi)

bi + p0Bi








 = − c0 ,
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where c0 is the velocity of sound in the mixture. The quantities αi and αj are determined from expressions (29) and
(30) after the integration of system (34). If some of the compressible fractions in the mixture are ideal gases for which
bk = 0, relations (21) hold for them, which diminishes the number of differential equations in system (34). By solution
of (34), we can also find the velocity of the "head" of the rarefaction-wave front, which is computed from the expres-
sion u∗ = u(ξ∗).

Figure 3 gives typical dependences of the distributions p(ξ) ⁄ p0, u(ξ) ⁄ u∗, and α(ξ) in the gas-liquid mixture
(γ1 = 1.4, c∗1 = 0, ρ∗1 = 1.19 kg ⁄ m3, γ2 = 5.59, c∗2 = 1500 m ⁄ sec, and ρ∗2 = 1000 kg ⁄ m3) for p0 = 105 Pa, α10 =
0.8, ρ10

0  = 1.19 kg ⁄ m3, and ρ20
0  = 1000 kg ⁄ m3. Integration of system (34) was from ξ0 = −28.65 to ξ∗ = 105.88; we

had u∗ = 108.54 m ⁄ sec.
Problem on the Accelerating Piston in a Dispersive Medium. We consider a fixed homogeneous gas-liquid

mixture with a volume concentration of the gas α0 and a density ρ0 (the liquid fraction is assumed to be incompress-
ible). At the initial instant of time t = 0, the piston begins to move at an accelerated pace under the action of external
forces with a velocity whose law of variation with time has the form

up = u0t
h
 . 

The position of the piston in space is determined by the formula

xp = x0 + 
u0

1 + h
 t

1+h
 , 

where x0 is the initial coordinate of the piston. A shock wave is formed ahead of the piston.
It is expedient to analyze this problem in Lagrangian mass coordinates. It is necessary to find the solution of

the system of equations

∂ρ
∂t

 − ρ2
 
∂u
∂ζ

 = 0 ,   
∂u

∂t
 + 

∂p

∂ζ
 = 0 ,     

∂p

∂t
 + 

γρp
α

 
∂u
∂ζ

 = 0 ,     
∂α
∂t

 − (1 − α) ρ 
∂u

∂ζ
 = 0 (35)

between the piston and the shock-wave front. Here the Lagrangian mass coordinate related to the Euler coordinate x

by the relation ζ = ∫ 
x0

x

ρ(y)dy is denoted by ζ. The solution of system (35) will be sought in the form

ρ = ρ0ρ (ξ) ,   u = u0u (ξ) th ,   p = ρ0u0
2
p (ξ) t2h

 ,   α = α (ξ) ,   ξ = ζ ⁄ (ρ0u0t
h+1) . (36)

Boundary conditions on the shock front are as follows [5]:

Fig. 3. Dependences of p ⁄ p0 (1), u ⁄ u∗ (2), and α (3) on ξ in outflow of a bi-
nary mixture into vacuum.
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ps = 
2α0ρ0D

2

1 + γ
 ,   

ρs

ρ0
 = 

1 + γ
1 + γ − 2α0

 ,   us = 
2α0D

1 + γ
 ,   αs = 

α0 (γ − 1)
1 + γ − 2α0

 . (37)

The shock wave is assumed to be "strong." Substituting expressions (36) into (35) and allowing for the relations

∂

∂t
 = 

d

dξ
 
∂ξ

∂t
 = − 

ξ (1 + h)

t
 

d

dξ
 ,   

∂

∂ζ
 = 

d

dξ
 
∂ξ

∂ζ
 = 

1

ρ0u0t
1+h

 
d

dξ
 , (38)

we obtain the system of four ordinary differential equations

− ξ (1 + h) 
dρ
dξ

 + ρ2
 
du
dξ

 = 0 ,     uh − ξ (1 + h) du
dξ

 + 
dp
dξ

 = 0 ,

− ξ (1 + h) dp
dξ

 + 
γρp

α
 
du
dξ

 + 2ph = 0 ,     ξ (1 + h) 
dα
dξ

 − (1 − α) ρ 
du
dξ

 = 0 .

(39)

Comparing the first and fourth relations of (39), we have

dρ
ρ

 + 
dα

1 − α
 = 0 .

(40)

After the integration of (40), we obtain 
ρ

1 − α
 = const; therefore, we have 

ρ
1 − α

 = 
ρs

1 − αs
. Whence, allowing for (38),

we find a relationship between the volume concentration of the gas and the density of the medium:

α = 1 − ρ (1 − α0) . (41)

Using expression (41), we reduce system (39) to a form convenient for integration:

dp
dξ

 = hp 

2ξ (1 + h) + 
γρu

1 − ρ (1 − α0)

ξ2
 (1 + h)2 − 

γρp

1 − ρ (1 − α0)

 ,   
du
dξ

 = 
h

ξ (1 + h)
 













u − p 

2ξ (1 + h) + 
γρu

1 − ρ (1 − α0)

ξ2
 (1 + h)2 − 

γρp

1 − ρ (1 − α0)













 ,

dρ

dξ
 = 

hρ

ξ2
 (1 + h)2

 













u − p 

2ξ (1 + h) + 
γρu

1 − ρ (1 − α0)

ξ2
 (1 + h)2 − 

γρp

1 − ρ (1 − α0)












 .

(42)

Allowing for the expression D = dζs
 ⁄ dt = (1 + h)ρ0u0ζst

h, we rewrite the conditions on the shock-wave front (37):

ρ (ξs) = 
1 + γ

1 + γ − 2α0
 ,   p (ξs) = 

2α0 (1 + h)2ξs
2

1 + γ
 ,   u (ξs) = 

2α0 (1 + h) ξs

1 + γ
 . (43)

Thus, on the segment [0, ξs], we have the boundary-value problem for system (42) with the known values of p(ξs),
u(ξs), and ρ(ξs) on the shock front. Furthermore, at the point with a coordinate ξp = 0, where the piston is, its veloc-
ity up = u0tp

h is known. The last relation, with account for (36), will be rewritten as

u (0) = 1 . (44)
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We are unable to analytically solve problem (42)–(44). Numerical solution can be obtained in the following
manner. We arbitrarily prescribe the position of the shock front ξs. We solve the Cauchy problem for system (42),
starting from the shock front where the values of the functions are known from (43) to the point ξp = 0. We deter-
mine the velocity u(0). If condition (44) is not observed, it is necessary to change ξs.

The typical distributions p(ξ), u(ξ), and α(ξ) obtained in calculations of flow of the gas-liquid mixture with
parameters h = 1, α0 = 0.8, u0 = 10 m ⁄ sec, p0 = 105 Pa, γ = 1.4, ρ10

0  = 1.19 kg ⁄ m3, and ρ2
0 = 1000 kg ⁄ m3 are given

in Fig. 4.
From the results of the work, we can draw the following conclusions. For the one-velocity heterogeneous-me-

dium model, in which interfractional-interaction forces are allowed for, we have obtained the solutions of self-similar
Prandtl–Meyer problems and problems of outflow of a mixture into vacuum and motion of a piston in a dispersive
medium by the known law. In addition to being of independent importance, the solutions found in the work can also
be used in testing computer programs intended for integration of the general equations of a one-velocity heterogeneous
medium.

NOTATION

c, velocity of sound in the mixture, m ⁄ sec; c∗i, constant of the equation of state, m ⁄ sec; D, velocity of move-
ment of the shock-wave front, m ⁄ sec; M, Mach number; m, number of compressible fractions in the mixture; n, total
number of fractions in the mixture; p, pressure, Pa; u and v, projections of the velocity vector onto the x and y coor-
dinate axes, m ⁄ sec; αi, volume concentration of the ith component of the mixture; γi, constant of the equation of state;
δ, opening span of the angle in flow, deg; ε, specific internal energy, m2 ⁄ sec2; ζ, Lagrangian mass coordinate; ξ, self-
similar variable; ρ, density of the mixture, kg ⁄ m3; ρi

0, true density of the ith fraction, kg ⁄ m3; ρi, reduced density of
the ith component, kg ⁄ m3; ρ∗i, constant of the equation of state, kg ⁄ m3. Subscripts and superscripts: 0, in an unper-
turbed flow; s, on the shock front; p, on the piston.
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Fig. 4. Dependences of p (1), u (2), and α (3) on ξ for flow of a gas-liquid
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